Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Heliyon ; 10(6): e28082, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515699

RESUMO

KBG syndrome is a rare autosomal dominant condition characterized by multisystem developmental disorder, primarily caused by loss-of-function variants in ankyrin repeat domain-containing protein 11 (ANKRD11). Approximately 80 % of ANKRD11 variants associated with KBG syndrome, are frameshift and nonsense variants. Current insight into the pathogenesis of KBG syndrome resulting from ANKRD11 truncating variants remains limited. Here, we presented two members from a non-consanguineous Chinese pedigree both exhibiting characteristics fitting the KBG syndrome-associated phenotypic spectrum. Whole-exome sequencing identified a novel heterozygous frameshift variant in ANKRD11 (NM_013275.6, c.2280_2281delGT, p.Y761Qfs*20) in the proband. Sanger sequencing confirmed that the variant was inherited from her mother and co-segregated with KBG syndrome phenotype. In vitro functional assays revealed that the frameshift variant escaped nonsense-mediated mRNA decay, and resulting in a truncated protein with significantly increased expression levels compared to full-length ANKRD11. Immunofluorescence results demonstrated that truncated protein was predominantly expressed in the nucleus of HEK293 cells, while wild-type ANKRD11 was equally distributed in both the nucleus and cytoplasm. Moreover, the truncated protein significantly reduced CDKN1A/P21-promoter luciferase activity in comparison to wild-type ANKRD11 protein, as well as a remarkably decrease in the endogenous CDKN1A/P21 mRNA level in HEK293 cells. These findings suggest a loss of transcriptional activation function and potentially a dominant-negative mechanism. Overall, our study expands the mutational spectrum of ANKRD11 gene and provides new insights into the pathogenic mechanism of KBG syndrome caused by ANKRD11 truncating variants.

2.
Adv Healthc Mater ; : e2304188, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411375

RESUMO

Intranasal vaccines, unlike injectable vaccines, boost immunity along the respiratory tract; this can significantly limit respiratory virus replication and shedding. There remains a need to develop mucosal adjuvants and vaccine delivery systems that are both safe and effective following intranasal administration. Here, biopolymer particles (BP) densely coated with repeats of MHC class I restricted immunodominant epitopes derived from influenza A virus namely NP366 , a nucleoprotein-derived epitope and PA224 , a polymerase acidic subunit derived epitope, are bioengineered. These BP-NP366 /PA224 can be manufactured at a high yield and are obtained at ≈93% purity, exhibiting ambient-temperature stability. Immunological characterization includes comparing systemic and mucosal immune responses mounted following intramuscular or intranasal immunization. Immunization with BP-NP366 /PA224 without adjuvant triggers influenza-specific CD8+ T cell priming and memory CD8+ T cell development. Co-delivery with the adjuvant poly(I:C) significantly boosts the size and functionality of the influenza-specific pulmonary resident memory CD8+ T cell pool. Intranasal, but not intramuscular delivery of BP-NP366 /PA224 with poly(I:C), provides protection against influenza virus challenge. Overall, the BP approach demonstrates as a suitable antigen formulation for intranasal delivery toward induction of systemic protective T cell responses against influenza virus.

3.
Gene ; 907: 148283, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354915

RESUMO

BACKGROUND: Isolated growth hormone deficiency (IGHD) is a rare genetically heterogeneous disorder caused primarily by mutations in GH1 and GH releasing hormone receptor (GHRHR). The aim of this study was to identify the molecular etiology of a Chinese boy with IGHD. METHODS: Whole-exome sequencing, sanger sequencing and bioinformatic analysis were performed to screen for candidate mutations. The impacts of candidate mutation on gene expression, intracellular localization and protein function were further evaluated by in vitro assays. RESULTS: A novel heterozygous frameshift mutation in the GHRH gene (c.91dupC, p.R31Pfs*98) was identified in a Chinese boy clinically diagnosed as having IGHD. The mutation was absent in multiple public databases, and considered as deleterious using in silico prediction, conservative analysis and three-dimensional homology modeling. Furthermore, mRNA and protein expression levels of mutant GHRH were significantly increased than wild-type GHRH (p < 0.05). Moreover, mutant GHRH showed an aberrant accumulation within the cytoplasm, and obviously reduced ability to stimulate GH secretion and cAMP accumulation in human GHRHR-expressing pituitary GH3 cells compared to wild-type GHRH (p < 0.05). CONCLUSION: Our study discovered the first loss-of function mutation of GHRH in a Chinese boy with IGHD and provided new insights on IGHD pathogenesis caused by GHRH haploinsufficiency.


Assuntos
Nanismo Hipofisário , Hormônio Liberador de Hormônio do Crescimento , Hormônio do Crescimento Humano , Humanos , Masculino , China , Nanismo Hipofisário/genética , Mutação da Fase de Leitura , Hormônio do Crescimento , Hormônio do Crescimento Humano/genética , Mutação , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Hormônio Liberador de Hormônio do Crescimento/genética , População do Leste Asiático/genética
4.
Adv Healthc Mater ; 13(7): e2302351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198823

RESUMO

Coxiella burnetti is an intracellular bacterium that causes Q fever, a disease of worldwide importance. Q-VAX® , the approved human Q fever vaccine, is a whole cell vaccine associated with safety concerns. Here a safe particulate subunit vaccine candidate is developed that is ambient-temperature stable and can be cost-effectively manufactured. Endotoxin-free Escherichia coli is bioengineered to efficiently self-assemble biopolymer particles (BPs) that are densely coated with either strings of 18 T-cell epitopes (COX-BP) or two full-length immunodominant antigens (YbgF-BP-Com1) all derived from C. burnetii. BP vaccine candidates are ambient-temperature stable. Safety and immunogenicity are confirmed in mice and guinea pig (GP) models. YbgF-BP-Com1 elicits specific and strong humoral immune responses in GPs with IgG titers that are at least 1 000 times higher than those induced by Q-VAX® . BP vaccine candidates are not reactogenic. After challenge with C. burnetii, YbgF-BP-Com1 vaccine leads to reduced fever responses and pathogen burden in the liver and the induction of proinflammatory cytokines IL-12 and IFN-γ inducible protein (IP-10) when compared to negative control groups. These data suggest that YbgF-BP-Com1 induces functional immune responses reducing infection by C. burnetii. Collectively, these findings illustrate the potential of BPs as effective antigen carrier for Q fever vaccine development.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Animais , Camundongos , Cobaias , Febre Q/prevenção & controle , Coxiella burnetii/metabolismo , Vacinas Bacterianas , Imunidade , Vacinas de Subunidades/metabolismo
5.
Cancer Res ; 84(3): 353-363, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055891

RESUMO

Neoantigen-based cancer vaccines have emerged as a promising immunotherapeutic approach to treat cancer. Nevertheless, the high degree of heterogeneity in tumors poses a significant hurdle for developing a vaccine that targets the therapeutically relevant neoantigens capable of effectively stimulating an immune response as each tumor contains numerous unique putative neoantigens. Understanding the complexities of tumor heterogeneity is crucial for the development of personalized neoantigen-based vaccines, which hold the potential to revolutionize cancer treatment and improve patient outcomes. In this review, we discuss recent advancements in the design of neoantigen-based cancer vaccines emphasizing the identification, validation, formulation, and targeting of neoantigens while addressing the challenges posed by tumor heterogeneity. The review highlights the application of cutting-edge approaches, such as single-cell sequencing and artificial intelligence to identify immunogenic neoantigens, while outlining current limitations and proposing future research directions to develop effective neoantigen-based vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/genética , Inteligência Artificial , Neoplasias/tratamento farmacológico , Imunoterapia
6.
NPJ Vaccines ; 8(1): 102, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452052

RESUMO

Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.

7.
Cardiovasc Diabetol ; 22(1): 98, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120516

RESUMO

BACKGROUND: Since the triglyceride glucose (TyG) index can reflect insulin resistance, it has been proven to be an efficient predictor of glycolipid-metabolism-related diseases. Therefore, this study aimed to investigate the predictive value of the TyG index for visceral obesity (VO) and body fat distribution in patients with type 2 diabetes mellitus (T2DM). METHODS: Abdominal adipose tissue characteristics in patients with T2DM, including visceral adipose area (VAA), subcutaneous adipose area (SAA), VAA-to-SAA ratio (VSR), visceral adipose density (VAD), and subcutaneous adipose density (SAD), were obtained through analyses of computed tomography images at the lumbar 2/3 level. VO was diagnosed according to the VAA (> 142 cm2 for males and > 115 cm2 for females). Logistic regression was performed to identify independent factors of VO, and receiver operating characteristic (ROC) curves were used to compare the diagnostic performance according to the area under the ROC curve (AUC). RESULTS: A total of 976 patients were included in this study. VO patients showed significantly higher TyG values than non-VO patients in males (9.74 vs. 8.88) and females (9.59 vs. 9.01). The TyG index showed significant positive correlations with VAA, SAA, and VSR and negative correlations with VAD and SAD. The TyG index was an independent factor for VO in both males (odds ratio [OR] = 2.997) and females (OR = 2.233). The TyG index ranked second to body mass index (BMI) for predicting VO in male (AUC = 0.770) and female patients (AUC = 0.720). Patients with higher BMI and TyG index values showed a significantly higher risk of VO than the other patients. TyG-BMI, the combination index of TyG and BMI, showed significantly higher predictive power than BMI for VO in male patients (AUC = 0.879 and 0.835, respectively) but showed no significance when compared with BMI in female patients (AUC = 0.865 and 0.835, respectively). CONCLUSIONS: . TyG is a comprehensive indicator of adipose volume, density, and distribution in patients with T2DM and is a valuable predictor for VO in combination with anthropometric indices, such as BMI.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Glucose , Estudos Transversais , Triglicerídeos , Obesidade Abdominal/diagnóstico , Glicemia/análise , Obesidade/complicações , Obesidade/diagnóstico
8.
Front Immunol ; 14: 1131057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817419

RESUMO

Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.


Assuntos
Antígenos , Doenças Transmissíveis , Humanos , Vacinas de Subunidades , Imunidade Celular
9.
Small ; 19(8): e2205819, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564365

RESUMO

Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Proteínas de Bactérias/química , Vacinas Sintéticas , Vacinas Conjugadas , Antígenos , Epitopos
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1216-1223, 2022 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-36317206

RESUMO

OBJECTIVE: To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome. METHODS: Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome. RESULTS: The optimization results of the multiplex PCR reaction system (50 µL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 µM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients. CONCLUSION: This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.


Assuntos
Síndrome de Turner , Humanos , Masculino , Síndrome de Turner/genética , Reação em Cadeia da Polimerase Multiplex , Cromossomo Y , Cariotipagem , Primers do DNA , DNA , Cromossomos Humanos Y/genética , Transducina/genética , Antígenos de Histocompatibilidade Menor , RNA Helicases DEAD-box/genética
11.
Front Endocrinol (Lausanne) ; 13: 920200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774144

RESUMO

Objective: To evaluate the association between the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and muscle density in children and adolescents of short stature. Methods: Participants were children and adolescents of short stature hospitalized in the Affiliated Hospital of Jining Medical University between January 2020 and June 2021. All participants had CT scan images available. We performed an analysis of the images to calculate the muscle density or skeletal muscle attenuation (SMA), skeletal muscle index (SMI), and fat mass index (FMI). Bioelectrical impedance analysis (BIA) was used to ensure that chest CT is a credible way of evaluating body composition. Results: A total of 297 subjects were included with the mean age of 10.00 ± 3.42 years, mean height standard deviation score (SDS) of -2.51 ± 0.53, and mean IGF-1 SDS of -0.60 ± 1.07. The areas of muscle and fat tissues at the fourth thoracic vertebra level in the CT images showed strong correlation with the total weights of the participants (R2  = 0.884 and 0.897, respectively). The peak of GH was negatively associated with FMI (r = - 0.323, P <.01) and IGF-1 SDS was positively associated with SMI (r = 0.303, P <.01). Both the peak GH and IGF-1 SDS were positively associated with SMA (r = 0.244, P <.01 and r = 0.165, P <.05, respectively). Multiple stepwise linear regression analysis demonstrated that the GH peak was the predictor of FMI (ß = - 0.210, P < .01), the IGF-1 SDS was the predictor of SMI (ß = 0.224, P < .01), and both the peak GH and IGF-1 SDS were predictors of SMA (ß = 0.180, P < .01 and ß = 0.222, P < .01). Conclusions: A chest CT scan is a credible method of evaluating body composition in children and adolescents of short stature. In these patients, peak GH and IGF-1 SDS are independent predictors of muscle density and the GF/IGF-1 axis may regulate body composition through complex mechanisms.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Músculo Esquelético , Adolescente , Criança , Transtornos do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/metabolismo
12.
Theranostics ; 12(6): 2811-2832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401827

RESUMO

Rational: The mutating SARS-CoV-2 potentially impairs the efficacy of current vaccines or antibody-based treatments. Broad-spectrum and rapid anti-virus methods feasible for regular epidemic prevention against COVID-19 or alike are urgently called for. Methods: Using SARS-CoV-2 virus and bioengineered pseudoviruses carrying ACE2-binding spike protein domains, we examined the efficacy of cold atmospheric plasma (CAP) on virus entry prevention. Results: We found that CAP could effectively inhibit the entry of virus into cells. Direct CAP or CAP-activated medium (PAM) triggered rapid internalization and nuclear translocation of the virus receptor, ACE2, which began to return after 5 hours and was fully recovered by 12 hours. This was seen in vitro with both VERO-E6 cells and human mammary epithelial MCF10A cells, and in vivo. Hydroxyl radical (·OH) and species derived from its interactions with other species were found to be the most effective CAP components for triggering ACE2 nucleus translocation. The ERα/STAT3(Tyr705) and EGFR(Tyr1068/1086)/STAT3(Tyr705) axes were found to interact and collectively mediate the effects on ACE2 localization and expression. Conclusions: Our data support the use of PAM in helping control SARS-CoV-2 if developed into products for nose/mouth spray; an approach extendable to other viruses utilizing ACE2 for host entry.


Assuntos
COVID-19 , Gases em Plasma , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Humanos , Gases em Plasma/farmacologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Methods Mol Biol ; 2406: 145-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089555

RESUMO

Recombinant E. coli producing intein-cleavable polyhydroxyalkanoate synthase fusions mediates the intracellular formation of polyhydroxyalkanoate (PHA) particles densely coated with intein-cleavable target protein fusion. These PHA particles can be efficiently purified from lysed cells. The self-cleaving intein performs as a bio-linker between the PHA synthase and the target protein. The tagless target protein can be released as pure soluble protein from the PHA particles by a simple pH reduction to 6.0. Here we describe that PHA particles serve as bioseparation resin for purification of soluble target proteins with pharmaceutical grade purity, similar to commercial affinity separation technologies. This cost-effective technique does not involve multiple complicated protein purification procedures, and we have exploited this approach to purify six target proteins: green fluorescent protein (GFP) from A. victoria, antigen Rv1626 from M. tuberculosis, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b).


Assuntos
Aciltransferases , Inteínas , Proteínas Recombinantes de Fusão , Aciltransferases/química , Aciltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Inteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade
14.
Adv Healthc Mater ; 11(3): e2102089, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716678

RESUMO

There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , Cricetinae , Humanos , Camundongos , Polímeros , SARS-CoV-2 , Temperatura
15.
Clin Chim Acta ; 524: 1-10, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826401

RESUMO

BACKGROUND: Growth hormone is an effective therapy for growth hormone deficiency (GHD) but with a rather variable individual sensitivity. It is unclear whether rare genetic variants may contribute to the differential GH responsiveness. METHODS: The present study aims to investigate the molecular etiology of GHD in Chinese children and adolescents and evaluate the impact of rare variants on therapeutic efficacies of GH. RESULTS: Twenty-one rare heterozygous variant were classified as promising uncertain significance (n = 14), pathogenic (n = 5) or likely pathogenic (n = 2) for 21 of the 93 GHD patients. After GHD patients harboring these rare variants were excluded, inter-individual variability in the response to GH therapy obviously reduced and the negative correlation between initiation age of treatment and height SDS change became stronger in the group without rare variants. Among rare variants, 7 (likely) pathogenic variants (7.5%, 7/93) involved a total of 6 genes not only associated with GH secretion (PROKR2, LZTR1), but also growth plate chondrocyte signaling (ACAN, FBN1, COL9A1) or genetic syndromes (PTPN11). CONCLUSIONS: Rare genetic variants are an important factor contributing to differential GH responsiveness and genetic testing should be factored into accurate diagnosis and treatment decision making in the future. CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR1900026510.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Adolescente , Povo Asiático/genética , Criança , China , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fatores de Transcrição , Resultado do Tratamento
16.
Vaccines (Basel) ; 9(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34960132

RESUMO

Streptococcus suis is a zoonotic pathogen affecting pigs and humans. This bacterium causes severe economic losses in the swine industry and poses a serious threat to public health and food safety. There is no effective commercial vaccine available for pigs or humans. In this study, we applied the biopolymer particle (BP) vaccine technology to incorporate seven conserved S. suis antigens (38 kDa protein (38), enolase (Enol), SSU1915, SSU1355, SSU0185, SSU1215, and SSU1773 (SSU1 and SSU2)). Two combinations of these antigens (38 and Enol; all SSU antigens designated as SSU1 and SSU2) were engineered to mediate production of BPs coated with either antigens 38 and Enol or SSU1 and SSU2 inside recombinant Escherichia coli. The isolated and purified empty BPs, 38-BP-Enol and SSU1-BP-SSU2, showed size ranges of 312-428 nm and 292-344 nm with and without the QuilA® adjuvant, respectively, and all showed a negative surface charge. Further characterization of purified BPs confirmed the presence of the expected antigen-comprising fusion proteins as assessed by tryptic peptide fingerprinting analysis using quadrupole time-of-flight mass spectrometry and immunoblotting. Vaccination with 38-BP-Enol and SSU1-BP-SSU2 formulated with and without QuilA® adjuvant induced significant antigen-specific humoral immune responses in mice. Antigen-coated BPs induced significant and specific Ig (IgM + IgG) and IgG immune responses (1.0 × 106-1.0 × 107) when compared with mice vaccinated with empty BPs. Functionality of the immune response was confirmed in challenge experiments using an acute murine S. suis infection model, which showed 100% survival of the 38-BP-Enol and SSU1-BP-SSU2 vaccinated mice compared to 70% survival when vaccinated with empty BPs. Overall, our data suggest that S. suis antigen-coated BPs could be developed into particulate vaccines that induce protective immunity against S. suis infections.

17.
NPJ Vaccines ; 6(1): 141, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845267

RESUMO

The current Malaria RTS,S vaccine is based on virus-like particles (VLPs) comprising the NANP repetitive epitopes from the cicumsporozoite protein (CSP) of Plasmodium falciparum. This vaccine has limited efficacy, only preventing severe disease in about 30% of vaccinated individuals. A more efficacious vaccine is urgently needed to combat malaria. Here we developed a particulate malaria vaccine based on the same CSP epitopes but using biopolymer particles (BPs) as an antigen carrier system. Specific B- and T-cell epitope-coated BPs were assembled in vivo inside an engineered endotoxin-free mutant of Escherichia coli. A high-yield production process leading to ~27% BP vaccine weight over biomass was established. The epitope-coated BPs were purified and their composition, i.e., the polymer core and epitope identity, was confirmed. Epitope-coated BPs were used alongside soluble peptide epitopes and empty BPs to vaccinate sheep. Epitope-coated BPs showed enhanced immunogenicity by inducing anti-NANP antibody titre of EC50 > 150,000 that were at least 20 times higher than induced by the soluble peptides. We concluded that the additional T-cell epitope was not required as it did not enhance immunogenicity when compared with the B-cell epitope-coated BPs. Antibodies specifically bound to the surface of Plasmodium falciparum sporozoites and efficiently inhibited sporozoite motility and traversal of human hepatocytes. This study demonstrated the utility of biologically self-assembled epitope-coated BPs as an epitope carrier for inclusion in next-generation malaria vaccines.

18.
Nanomaterials (Basel) ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443891

RESUMO

Currently available vaccines fail to provide consistent protection against tuberculosis (TB). New, improved vaccines are urgently needed for controlling the disease. The mycobacterial antigen fusions H4 (Ag85B-TB10.4) and H28 (Ag85B-TB10.4-Rv2660c) have been shown to be very immunogenic and have been considered as potential candidates for TB vaccine development. However, soluble protein vaccines are often poorly immunogenic, but augmented immune responses can be induced when selected antigens are delivered in particulate form. This study investigated whether the mycobacterial antigen fusions H4 and H28 can induce protective immunity when assembled into particulate vaccines (polyester nanoparticle-H4, polyester nanoparticle-H28, H4 nanoparticles and H28 nanoparticles). The particulate mycobacterial vaccines were assembled inside an engineered endotoxin-free production strain of Escherichia coli at high yield. Vaccine nanoparticles were purified and induced long-lasting antigen-specific T cell responses and protective immunity in mice challenged by aerosol with virulent Mycobacterium tuberculosis. A significant reduction of M. tuberculosis CFU, up to 0.7-log10 protection, occurred in the lungs of mice immunized with particulate vaccines in comparison to placebo-vaccinated mice (p < 0.0001). Polyester nanoparticles displaying the mycobacterial antigen fusion H4 induced a similar level of protective immunity in the lung when compared to M. bovis bacillus Calmette-Guérin (BCG), the currently approved TB vaccine. The safe and immunogenic polyester nanoparticle-H4 vaccine is a promising subunit vaccine candidate, as it can be cost-effectively manufactured and efficiently induces protection against TB.

19.
ACS Appl Mater Interfaces ; 13(27): 31418-31430, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185493

RESUMO

Early sensitive diagnosis of cancer is critical for enhancing treatment success. We previously bioengineered multifunctional core-shell structures composed of a poly-3-hydroxybutyrate (PHB) core densely coated with protein functions for uses in bioseparation and immunodiagnostic applications. Here, we report bioengineering of Escherichia coli to self-assemble PHB inclusions that codisplay a ferritin-derived iron-binding peptide and the protein A-derived antibody-binding Z domain. The iron-binding peptide mediated surface coating with a ferrofluid imparting superparamagnetic properties, while the Z domain remained accessible for binding of cancer biomarker-specific antibodies. We demonstrated that these nanobeads can specifically bind biomarkers in complex mixtures, enabling efficient magnetic separation toward enhanced electrochemical detection of cancer biomarkers such as methylated DNA and exosomes from cancer cells. Our study revealed that superparamagnetic core-shell structures can be derived from biological self-assembly systems for uses in sensitive and specific electrochemical detection of cancer biomarkers, laying the foundation for engineering advanced nanomaterials for diverse diagnostic approaches.


Assuntos
Bioengenharia , Biomarcadores Tumorais/análise , Eletroquímica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Nanoestruturas/química , Poliésteres/metabolismo , Ferritinas/metabolismo , Limite de Detecção
20.
Nanomedicine ; 34: 102374, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675981

RESUMO

Despite recent advances in diagnosis, tuberculosis (TB) remains one of the ten leading causes of death worldwide. Here, we engineered Mycobacterium tuberculosis (Mtb) proteins (ESAT6, CFP10, and MTB7.7) to self-assemble into core-shell nanobeads for enhanced TB diagnosis. Respective purified Mtb antigen-coated polyester beads were characterized and their functionality in TB diagnosis was tested in whole blood cytokine release assays. Sensitivity and specificity were studied in 11 pulmonary TB patients (PTB) and 26 healthy individuals composed of 14 Tuberculin Skin Test negative (TSTn) and 12 TST positive (TSTp). The production of 6 cytokines was determined (IFNγ, IP10, IL2, TNFα, CCL3, and CCL11). To differentiate PTB from healthy individuals (TSTp + TSTn), the best individual cytokines were IL2 and CCL11 (>80% sensitivity and specificity) and the best combination was IP10 + IL2 (>90% sensitivity and specificity). We describe an innovative approach using full-length antigens attached to biopolyester nanobeads enabling sensitive and specific detection of human TB.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Nanopartículas , Tuberculose Pulmonar/diagnóstico , Citocinas/metabolismo , Humanos , Sensibilidade e Especificidade , Tuberculose Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...